

Entomology Worksheet 1

1. Calculate the heat/thermal energy (accumulated degree hour) required for each stage of the Green Bottle Fly's life cycle.

Table 1: ADH of the Green Bottle Fly

From	То	Temperature	Hours	ADH (accumulated degree hour)
Egg	First instar	70° F	23	70 X 23 = 1610 ADH
		70° F	27	
		70° F	22	
		70° F	130	
		70° F	143	

- 3. Using the above Table 1 as the reference, calculate and fill in the blank areas.
 - a. How many hours does it take for a green bottle fly egg to become an adult fly?

hours Convert these l	houre to day	vs and hours
nours convert these i	nouis to uay	o and nours

b. For a maggot at the beginning of the second instar stage, how may hours does it take to reach

the third instar if the ambient temperature is at 77° F? hours

c. If you are rearing a Green Bottle Fly pupa, at what temperature do you need to keep the pupa to

have the adult fly merge in about 7 days? F

d. Determine whether each of the following is a constant or a variable in the experiment:

Table 2: Constants and Variables

Table 21 Combanies and Tarrasios					
	Constant	Variable			
Life cycle stages					
Temperature					
Time between the life cycle stages					
ADH					

4. Describe in your own words how insect life cycles can be used in estimating the time of death.